Using R for public health intelligence

Steve Piper, Senior Public Health Manager North Lincolnshire Council

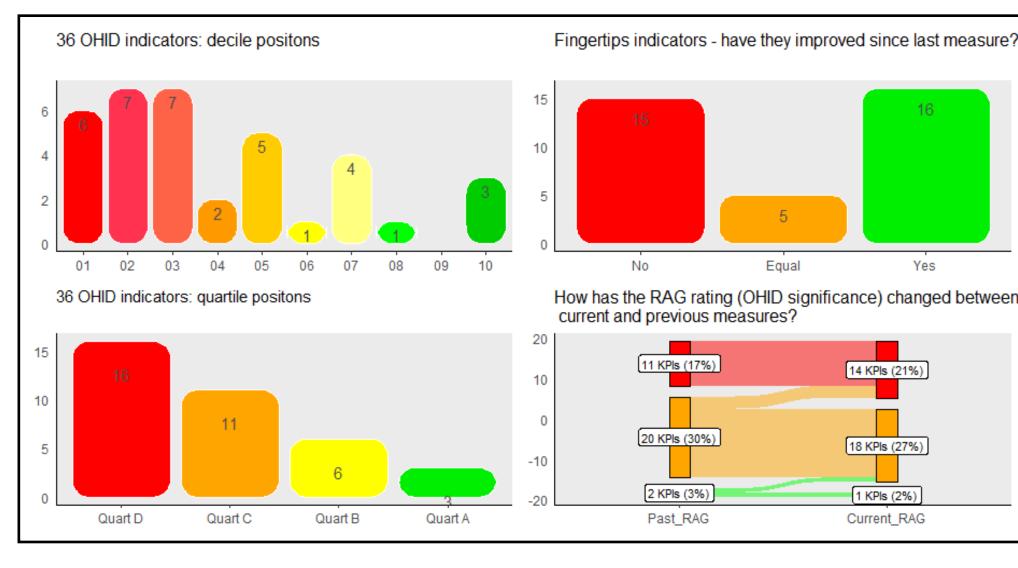
What is R?:

North

Council

Lincolnshire

R is a powerful and free programming language and software environment designed specifically for statistical computing and graphics. It is widely used by data analysts, statisticians, and researchers for data analysis, data visualization, and statistical modelling.

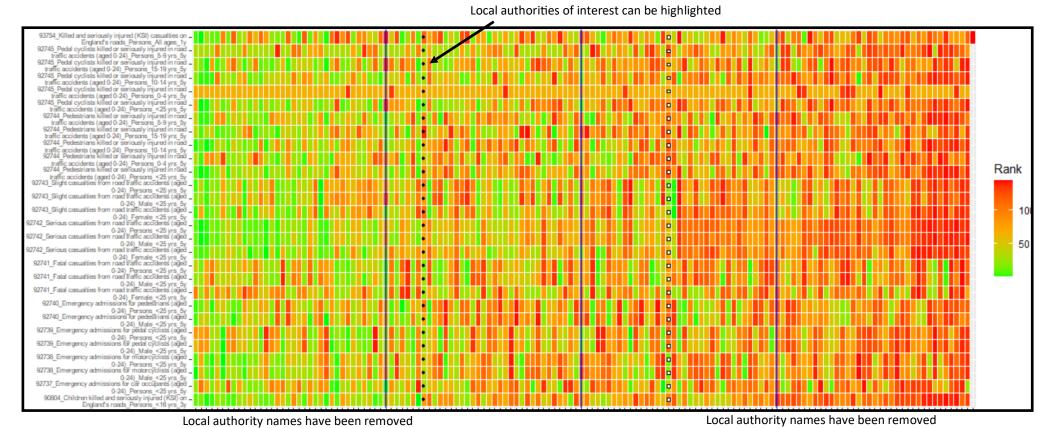

What have I used R for?:

I have used R for various applications and found it particularly useful for analysing Fingertips data using the application programming interface (API). R has enabled me to analyse multiple indicators from every local authority, create integrated heat maps, calculate quartile positions, and understand positions in relation to statistical neighbours. While the need to use code can be a downside, once the code is written, it is very easy to tweak variables (e.g., gender, age, indicator ID) to report on new Fingertips indicators. The purpose this poster is to oshowcase some of R's potential in a public health setting.

Monthly surveillance:

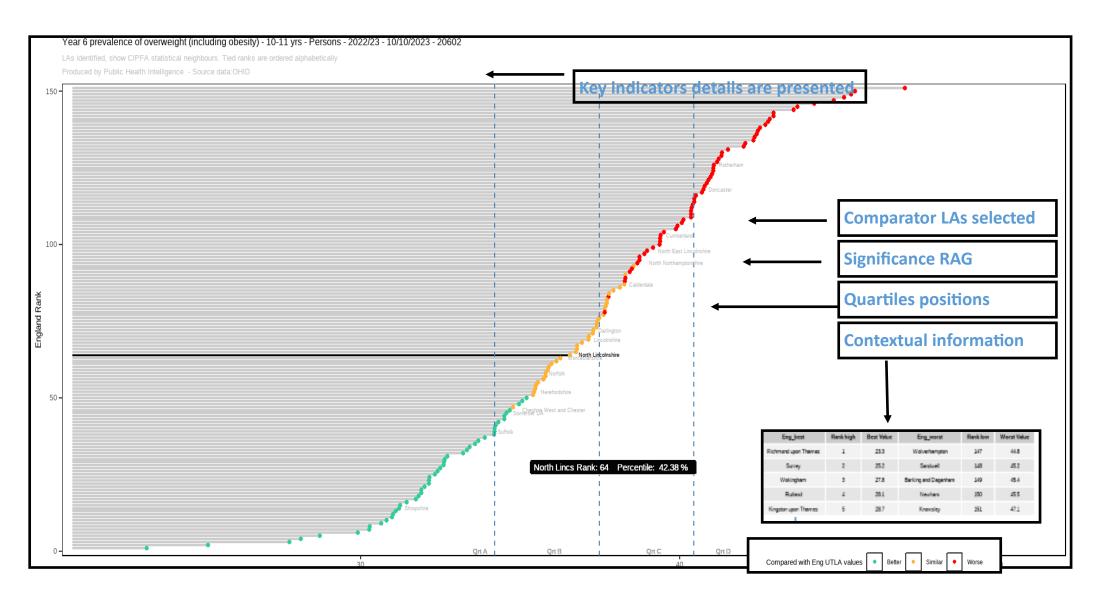
I have used R to provide monthly reports showing which indicators have been updated, whether they have improved, and what their quartile / decile position is. This format allows all Fingertips indicators to be reviewed regularly and reported on a monthly basis. The script is about 750 lines long and draws monthly data directly from Fingertips, automatically creating the table and four summary charts. In September, 36 indicators were updated and could be analysed by quartiles. To achieve the results below, R processed 182,555 lines of data.

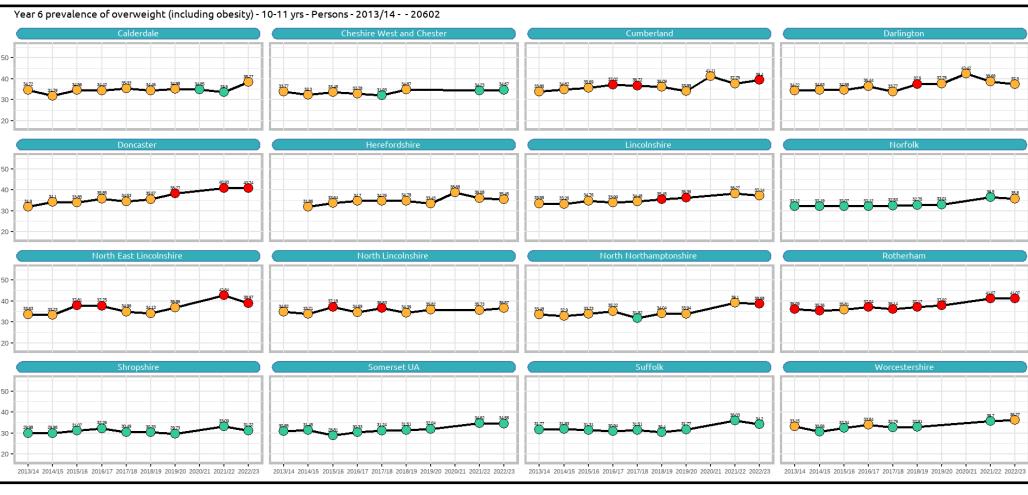
Indicator Information								Performance			Evauation				
UID	Updated	Polarity	Period	IndicatorName Q		Q2	Q3	Prev1	NL	Eng	Impv	Qart_Pos	Decile	Past_RAG	Current_RAG
91818_All ages_Persons	24/09/2024	Low_good	2023_1y	New HIV diagnosis rate per 100,000	6.0	8.8	14.5	2.9	3.5	10.4	No	Quart A	10	Better	Better
93542_15+ yrs_Male	24/09/2024	Low_good	2021 - 23_3y	\ensuremath{HIV} late diagnosis in gay, bisexual and other men who have sex with men first diagnosed with \ensuremath{HIV} in the UK	23.6	33.3	50.0	0.0	0.0	34.3	Equal	Quart A	10	Not compared	Not compared
93544_15+ yrs_Female	24/09/2024	Low_good	2021 - 23_3y	\ensuremath{HIV} late diagnosis in heterosexual and bisexual women first diagnosed with \ensuremath{HIV} in the UK	33.3	45.8	57.1	0.0	0.0	46.4	Equal	Quart A	10	Not compared	Not compared
92313_16-24 yrs_Persons	05/09/2024	High_good	2023/24_1y	Percentage of people in employment	44.1	52.2	60.3	75.0	53.6	52.4	No	Quart B	06	Better	Similar
92313_25-49 yrs_Persons	05/09/2024	High_good	2023/24_1y	Percentage of people in employment	80.4	85.0	88.9	85.8	87.2	85.4	Yes	Quart B	07	Similar	Similar
92953_All ages_Male	10/09/2024	Low_good	2020 - 22_3y	Mortality rate from oral cancer, all ages	6.6	7.9	9.5	6.6	6.8	7.6	No	Quart B	08	Similar	Similar
93074_All ages_Persons	03/09/2024	Low_good	2024_1y	Access to Healthy Assets & Hazards Index	8.6	13.4	32.6	12.7	10.7	20.9	Yes	Quart B	07	Not compared	Not compared
93382_18-64 yrs_Persons	17/09/2024	Low_good	2023_1y	Odds of current smoking (self-reported) among adults aged 18 to 64 with a routine and manual occupation (APS)	1.5	2.0	2.6	2.5	1.8	2.0	Yes	Quart B	07	Not compared	Not compared

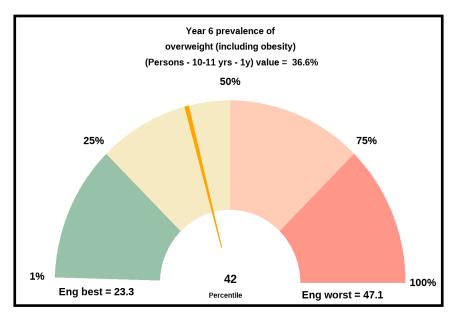


Performance Reports :

The code used for the surveillance reports has also been modified to conduct a deep dive analysis of all Fingertips KPIs. This helps, for example, identify how many indicators a local authority has in each quartile and decile. A recent review of indicators analysed over 2.6 million records using R. The table below shows a few rows looking at all indicators in decile 10. R is particularly efficient at harvesting data from Fingertips, enabling this kind of analysis. Data can be formatted using a library called RMarkdown to produce reports.

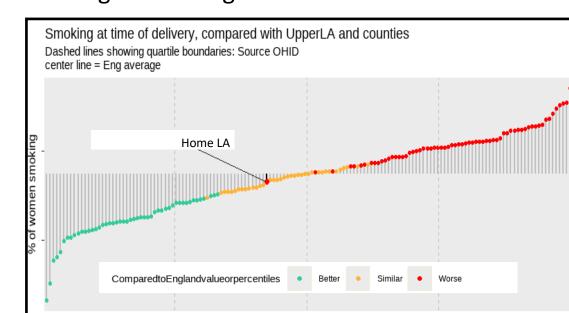

North Lincolnshire OHID indicators from all Profiles: Top Decile													
Indicator Inforamtion	quartil	quartiles			Context				Evauation				
90776_15-24 yrs_Female	29/05/2024	High_good 2023_1y	Chlamydia detection rate per 100,000 aged 15 to 24	1547.4	1835.1	2162.3	2394.3	3529.1	1961.7	Yes	Quart A	10	Not compared
91514_15-24 yrs_Persons	29/05/2024	High_good 2023_1y	Chlamydia detection rate per 100,000 aged 15 to 24	1172.8	1431.4	1778.0	1717.0	2441.8	1545.9	Yes	Quart A	10	Not compared
90777_15-24 yrs_Female	29/05/2024	High_good 2023_1y	Chlamydia proportion of females aged 15 to 24 screened	16.1	18.6	23.1	26.4	28.9	20.4	Yes	Quart A	10	Better
90777_15-24 yrs_Female	29/05/2024	High_good 2023_1y	Chlamydia proportion of females aged 15 to 24 screened	16.1	18.6	23.1	26.4	28.9	20.4	Yes	Quart A	10	Better
92432_All ages_Persons	09/04/2024	Low_good 2020 - 22_3y	Deaths from drug misuse	3.5	5.0	7.7	3.4	2.3	5.2	Yes	Quart A	10	Better





The charts below shows two benchmarking reports that clearly evaluate the relative position of any selected local authorities. The top chart displays the home local authority (black line) and comparator local authorities. Any comparators can be selected, but I have chosen statistical neighbours. The data are then separated into quartiles and RAG rated according to significance. The code takes into account the polarity of the indicator and formats the quartile boundaries accordingly. The header is generated from Fingertips meta data and presents key information abou the indicator definition.

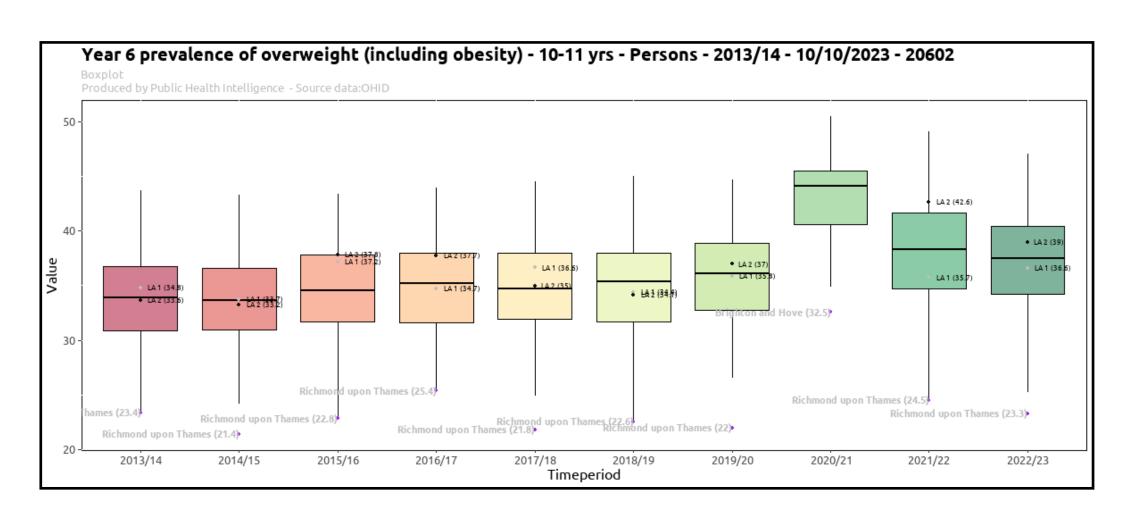
The line chart provides a trend view of how well the home local authority is performing compared to a selection of other local authorities over time. The data visualisation capabilities in R are excellent for displaying multiple comparison graphs in an ordered format. Producing this report, compared to a single line graph, only required a couple of extra lines of code.

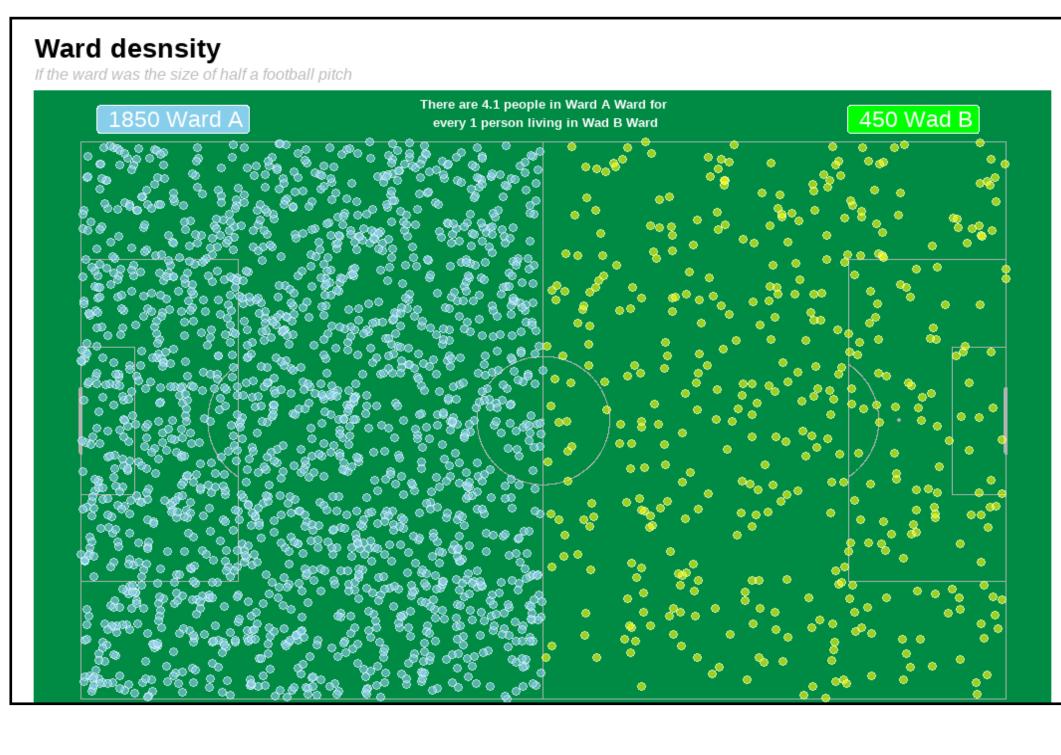


Complex patchwork / indices:

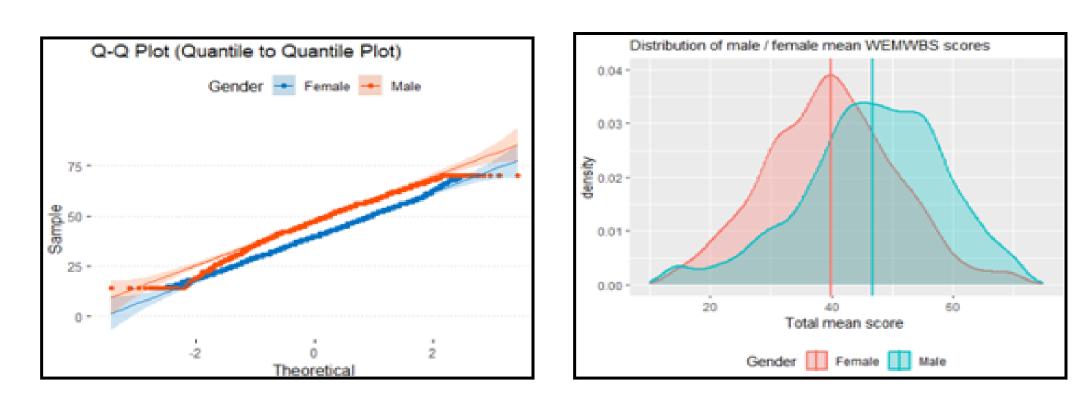
This heatmap or patchwork analysis allows multiple indicators to be selected from Fingertips, creating an index that shows the relative performance of each local authority as a colour-coded patchwork. Each local authority's performance is ranked, with the data aggregated to display higher-performing local authorities on the left (better). R calculates the polarity for each indicator and ranks the data accordingly (from 1 to about 152, depending on the number of local authorities). The illustration below uses approximately 4,500 data points.

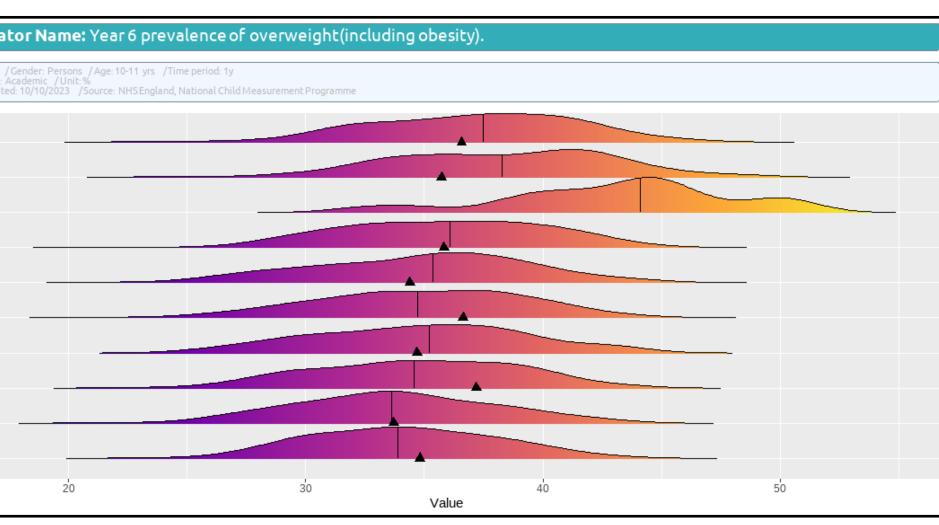
Benchmarking reports:


The dial chart below uses three variables from Fingertips (age, gender, and Indicator ID). By changing these variables, a dial can be produced for most Fingertips KPIs. The dial shows the quartile position, significance (needle colour), and the best and worst outturn results for English local authorities. The lollipop chart on the right is a specific benchmarking report that shows whether the outturn is better or worse than the England average

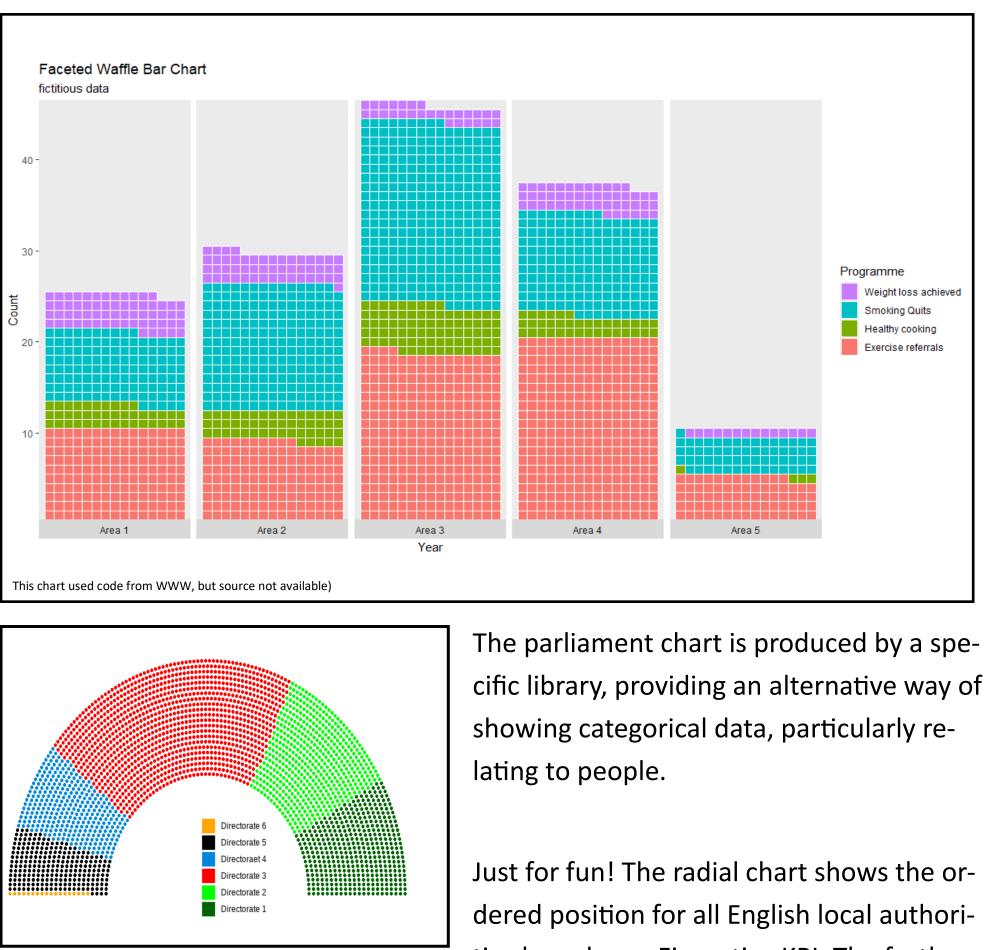

Distributions

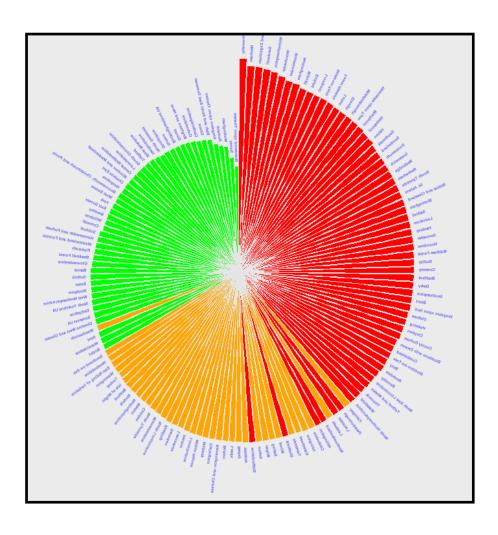
Inc	lica
ID:20 Year Last)602 / type: A update
2022/23-	
2021/22-	
2020/21-	
2019/20-	
2018/19-	
2017/18-	
2016/17-	
2010/11	
2015/16-	
2014/15-	
2013/14-	


The same data are plotted in a box and whisker chart with the advantage that the inter quartile range is easier to identify. Bespoke data points can also be added. I have added the best performing LA and two LA's with their respective outturn positions.


This simple spatial data visualisation below requires two values to be input: (a) ward name and (b) population density. R then produces this visualisation to illustrate the differences in population densities. This uses a specific library called "Soccer", which provides template for this data visualization. The dots in this visualization have been made transparent, so its easier to see overlapping dots. The position of the dots are randomly generated.

skewedness.


This column shows how I have used R to illustrate various distributions. The ridgeline graph below shows the English distribution results for overweight Y6 pupils (fingertips). This highlights how the mean England score has shifted over 10 years—the triangle is selected LA.



The two graphs below demonstrate how R was used to visually assess a population sample for skewness. Using transparency colours, the distributions was clearly illustrated, making it easier to see how the two distributions varied. Additionally, a Q-Q plot test was conducted in R to test for

Categorical Data

This column demonstrates how I have used R to illustrate categorical data. The first chart is known as a "Waffle Chart". I have set up this template in R, allowing the variables to be easily changed and the chart to be reproduced. This format is excellent for representing people or units as individual squares.

Conclusion

I have found R enjoyable but challenging to learn, especially the basics. It requires coding skills, which makes it quite different from Excel. However, the work and outputs can be tailored very precisely. Power BI is certainly easier for building interactive dashboards, and Excel's pivot tables allow for quicker data manipulation. However, R possesses an array of tools and packages for importing, cleaning, and wrangling data, making it a versatile tool. For example, R was able to analyse a complete survey with just a few lines of code.

I like that data can be wrangled using R without ever altering the source data. Cleaning data, creating new columns, and performing calculations is a relatively straightforward process. One of the main advantages I have found is R's ability to handle and analyse very large datasets. This allows for the analysis of Fingertips data, which is otherwise not available on the website. There are numerous web resources available to support learning and using R effectively

ties based on a Fingertips KPI. The further the local authority is from the centre, the worse their position. Each local authority is RAG rated based on OHID significance. This is not a chart I use, but it demonstrates R's creative potential.

The bar chart below uses code to automatically place categorical text either inside or outside of its respective bar, depending on the bar length, and again demonstrates the flexibility of R.

1	trair	ning	atte	nded											
os	m ellbeing	100 otection	125	150	175	200	225	250	275	300	325	350	375	400	425
ote	ection														
1															
	ations														
n															
5										This char	t used code	e from WV	/W, but so	ource not a	available)